

NC165-S No-Clean Liquid Flux

Introduction

NC165-S is a low-solids liquid flux for selective and wave solder applications. NC165-S passes Telcordia GR-78 electrochemical migration for high reliability applications. NC165-S has been designed to reduce the potential for clogging of drop-jet flux systems. NC165-S is also compatible with spray and foaming type flux systems. NC165-S works well with leaded and Pb-free alloys and is halide free.

Attributes

- Excellent liquid flux for wave and selective soldering, and touch up or rework.
- Low solids content (4% wt) which leaves a clear and colorless residue.
- Works well for Sn63/Pb37, SAC305 and SN100C alloys.

Liquid Flux Packaging	Part Number	Net Volume
Jug	NC165-SU	1 gallon
Pail	NC165-SP	5 gallons
Drum	NC165-SD	55 gallons

Compatible Products

FT-100 Flux Thinner. TK-100 Titration Kit.

Storage and Handling

- Shelf life is 3 years when the unopened flux is stored between 50 to 90 °F (10 and 32 °C).
- Keep the flux sealed in the original container to limit evaporation of solvent and minimize the risk of contamination.
- When storing used flux, do not mix it into the container with the new (fresh) flux.

Process Parameters

The process parameters shown below are simply guidelines. The optimal parameters may be different based upon your equipment, circuit boards, components, and process.

Flux Parameters	Guideline	
Specific gravity (SG)	0.76 to 0.82 g/cc	
Acid number	18 - 22 mg KOH / gram flux	
Amount of flux (Foaming)	800 - 1500 μg / in ² of dried flux	
	20.0 - 37.5 mg / in ² of wet flux	
Amount of flux (Spray)	500 - 1500 μg / in ² of dried flux	
	12.5 - 37.5 mg / in ² of wet flux	

Coverage of flux should be uniform over the entire fluxed area. Penetration of flux through the circuit board holes can be checked using paper or cardboard on top of the circuit board run through the fluxer. Inspect the paper or cardboard for uniform wetness at each hole. Adjust the flux system if necessary.

Wave Solder Parameters	Sn63/Pb37	SN100C or SAC305
Immersion depth in wave	¹ ⁄ ₂ to ³ ⁄ ₃ of the board thickness	¹ ⁄ ₂ to ² ⁄₃ of the board thickness
Top side preheat temperature	80 to 100 °C	90 to 120 °C
Bottom side preheat	25 to 35 °C higher than the top	25 to 35 °C higher than the top
temperature	side	side
Preheat ramp rate maximum	2 °C / second maximum	2 °C / second maximum
Conveyor speed	4 to 6 ft/min (1.2 - 1.8 m/min)	3 to 6 ft/min (0.9 - 1.8 m/min)
Contact time in wave	2 to 4 seconds	3 to 6 seconds
Solder pot temperature	230 to 260 °C	250 to 275 °C

Selective Solder Parameters	Sn63/Pb37	SN100C or SAC305
Top side preheat temperature	80 to 100 °C	90 to 120 °C
Bottom side preheat	25 to 35 °C higher than the top	25 to 35 °C higher than the top
temperature	side	side
Preheat ramp rate maximum	2 °C / second maximum	2 °C / second maximum
Movement rate while soldering	5 to 15 in/min	5 to 15 in/min
Contact time	1 to 3 seconds	1 to 4 seconds
Solder pot temperature	280 to 310 °C	290 to 320 °C

Flux Control

Solvents will evaporate out of the flux over time and the solvents should be replaced through analysis and additions of FT-100 Flux Thinner. NC165-S flux is best controlled through an acid number titration using the procedure below. The flux should be tested and thinned approximately once every 2 to 4 hours of operation (foaming systems), or once every 20 to 24 hours of operation (spray systems).

- 1. Pipette 5.0 mL of flux into a titration flask.
- 2. Add 40 50 mL of D.I. water or IPA and mix.
- 3. Add 2 3 drops of phenolphthalein indicator solution and mix.
- 4. Titrate to the faint pink endpoint using 0.1 N sodium hydroxide or 0.1 N potassium hydroxide solution.
- Calculation for acid number: Acid number (mg KOH/g flux) = (mLs of 0.1N NaOH or KOH used) x 1.41

Maintain the acid number between 18 and 22 mg KOH / g flux. An addition of 5.3% by volume FT-100 will reduce the acid number by 1.0. For example, if the flux sump contains 20 gallons of flux, then an addition of 1.1 gallons of FT-100 will reduce the acid number by 1.0. Contact FCT Assembly for details on our TK-100 Titration Kit which can be used to perform acid number titrations.

In recirculating flux equipment, the flux will accumulate contaminates and debris over time. Spent flux should be replaced after approximately 40 hours of use. The equipment, foam stone and sump should be cleaned with flux thinner before adding new (fresh) flux.

During extended shut down periods such as nights and weekends, the flux should be removed from the machine and stored in a sealed container. The air stone should be immersed in flux thinner during the shut-down period. Pumps and tubing should be flushed with flux thinner during the shut-down period.

Cleaning

Raw flux can be removed from circuit boards and equipment using flux thinner. After heating, no-clean flux residues are designed to be "safe" and do not need to be removed from the circuit board. If removal of the flux residues is desired, then a commercial cleaning agent should be used. Please contact your cleaning chemical supplier for details.

Safety

Wear chemically resistant gloves and safety glasses when handling liquid flux. Avoid breathing fumes, especially during heating of the flux. NC165-S contains a flammable solvent with a flashpoint of 55 °F (13 °C). Keep the flux away from open flames and other ignition sources. Follow the guidelines in the Safety Data Sheet (SDS).

J-STD-004D Flux Standard	Test Method	Result
J-STD-004 classification	J-STD-004 methods	ROLO
Visual appearance	Visual	Clear to faint amber
Solids content	IPC 2.3.34	3.8 to 4.2% wt
Acid value	IPC 2.3.13	18 to 22 mg KOH / gram flux
Specific gravity	ASTM D-1298	0.76 to 0.82 g/cc
Halide ion content (Br ⁻ , Cl ⁻ , F ⁻ , I ⁻)	IPC 2.3.28.1	0.0 % wt
Halogen content (Br and Cl)	EN 14582, IPC 2.3.28.1	3.0 to 3.5% wt of the solids
Halide by silver chromate	IPC 2.3.33	No halides detected
Fluoride by spot test	IPC 2.3.35.1	None detected
Copper mirror	IPC 2.3.32	Low activity
Copper corrosion	IPC 2.6.15	No corrosion
Surface Insulation Resistance (SIR)	IPC 2.6.3.7	Pass
Comb-up		
Surface Insulation Resistance (SIR)	IPC 2.6.3.7	Pass
Comb-down		
Surface Insulation Resistance (SIR)	IPC 2.6.3.7	Pass
Non-heated or raw state		
Electro Chemical Migration (ECM)	IPC 2.6.14.1	Pass
Telcordia ECM (10V, 85°C/85% RH)	GR-78	Pass

Limited Liability and Warranty Disclaimer

All information, statements, technical data, and recommendations contained in this Technical Data Sheet are based on testing we believe to be reliable. However, the accuracy or completeness thereof is not guaranteed. It is impossible for our lab to account for all manufacturing conditions and variables. Products are warranted to be free from defects at the time sold. To the full extent consistent with applicable law, the exclusive remedy of the user or buyer is to receive replacement product for any product defective at the time sold. FCT Assembly, Inc. makes NO WARRANTIES OF MERCHANTABILITY OR

FITNESS FOR A PARTICULAR PURPOSE. Further, FCT Assembly, Inc. makes no other express, implied, or statutory warranties unless otherwise specified in writing and signed by officers of the corporation.

